扫描二维码关注“博士后招聘网”微信订阅号或微信搜一搜“博士后招聘网”关注我们。
当前位置: 博士后招聘网 > 国外博士后招聘 > 丹麦奥尔堡大学2022年招聘博士后职位(基于图数据的人性化数据挖掘与深度学习)

丹麦奥尔堡大学2022年招聘博士后职位(基于图数据的人性化数据挖掘与深度学习)

信息来源:丹麦奥尔堡大学 | 作者:admin | 时间:2022-06-01 14:41

【简介】博士后招聘网整理分享“丹麦奥尔堡大学2022年招聘博士后职位(基于图数据的人性化数据挖掘与深度学习)”,浏览查询更多博士后招聘计划请访问博士后招聘网

丹麦奥尔堡大学2022年招聘博士后职位(基于图数据的人性化数据挖掘与深度学习)

POSTDOC POSITION: HUMAN-IN-THE-LOOP DATA MINING AND DEEP LEARNING ON GRAPH DAT

Aalborg University

Job description

Human-in-the-loop Data Mining and Deep Learning on Graph Data: Graph data, e.g., social and biological networks, financial transactions, transportation systems, and telecommunication networks are pervasive in the natural world, where nodes are entities with features and edges represent relations among them. Machine learning and deep learning over graphs become ubiquitous, for instance, in cheminformatics (drug discovery, designing molecular structures with desired properties, virtual screening) and bioinformatics (drug-disease association and protein interaction prediction), detecting malwares and abnormal transactions, classifying customers based on calling behavior, feeds on Twitter, Facebook, and churn prediction. Despite deep learning models often achieving state-of-the-art performance in many tasks, they are “black-box”: It is difficult to understand which aspects of the input graph data drive the decisions of the model. Interpretability can improve the model's transparency related to fairness, privacy, and other safety challenges, thus enhancing the trust in decision-critical applications and ease their adoption in life science, health, law enforcement, and financial domains. To this aim, we shall design a user-in-the-loop interpretation framework that translates deep learning-based findings back to users, supports “why” and “why-not” questions over prediction results (e.g., “why a new app is classified as a malware”? Or “what minimum, valid changes in a molecule structure would optimize desired chemical and biological properties”?), assists users in formulating relevant questions with minimum efforts, and incorporate users' interactive feedback to improve training data and deep learning models.

The aim will be publishing several research papers at top-tier data mining, data management, or machine learning conferences based on the research work. The project's principal supervisor is Associate Professor Arijit Khan, Department of Computer Science. His research works can be found at here, here, and here

Within the area, the position comes with many freedoms in terms of the specific research direction, methodology, and approaches taking the specific project needs into consideration. Accordingly, in addition to the detailed CV and recommendation letters (if any), the applicant should provide a short cover letter which describes the applicant's background, interests, and initial thoughts and ideas.

Regarding the host institution: The Computer Science Department at Aalborg University takes a leading international position within data management and verification. It is a very young university (1974) but with a strong international profile in Mathematics, and Computer Science & Engineering, also hosting the two most highly cited Computer Scientists of the country. According to the CWTS Leiden Ranking 2014 measuring the scientific performance of 750 major universities worldwide, Aalborg University is ranked no. 117 worldwide and is the highest ranked Danish university within Mathematics, Computer Science & Engineering. In THE Impact Ranking, Aalborg University is ranked as no. 6 in the world. According to US News World Ranking, Aalborg University ranks as no. 250 in the overall world university rankings and as no. 8 in the world, and best in Europe, within the field of Engineering.

Aalborg is an attractive student city located at the Fjord and close to the Sea, and is well-connected (by car, train, but also via Aalborg Airport). Denmark in general and Aalborg in particular are known for their excellent quality of life. Denmark took the top spot on the United Nation's World Happiness Report, 2013 & 2014 & 2016.

You may obtain further professional information from Professor Christian S. Jensen csj@cs.aau.dk.

Qualification requirements:

Appointment as Postdoc presupposes scientific qualifications at PhD–level or similar scientific qualifications. The research potential of each applicant will be emphasized in the overall assessment. Appointment as a Postdoc cannot exceed a period of four years in total at Aalborg University.

The application must contain the following:

A motivated text wherein the reasons for applying, qualifications in relation to the position, and intentions and visions for the position are stated.

A current curriculum vitae.

Copies of relevant diplomas (Master of Science and PhD). On request you could be asked for an official English translation.

Scientific qualifications. A complete list of publications must be attached with an indication of the works the applicant wishes to be considered. You may attach up to 5 publications.

Dissemination qualifications, including participation on committees or boards, participation in organisations and the like.

Additional qualifications in relation to the position. References/recommendations.

Personal data.

The applications are only to be submitted online by using the "Apply online" button below.

Shortlisting will be applied. After the review of any objections regarding the assessment committee, the head of department, with assistance from the chair of the assessment committee, selects the candidates to be assessed. All applicants will be informed as to whether they will advance to assessment or not.

AAU wishes to reflect the diversity of society and welcomes applications from all qualified candidates regardless of personal background or belief.

For further information concerning the application procedure please contact Søren Kjelst Klausen by mail skkl@adm.aau.dk or phone (+45) 9940 3939. Information regarding guidelines, ministerial circular in force and procedures can be seen here

Agreement

Employment is in accordance with the Ministerial Order on the Appointment of Academic Staff at Universities (the Appointment Order) and the Ministry of Finance's current Job Structure for Academic Staff at Universities. Employment and salary are in accordance with the collective agreement for state-employed academics.

Vacancy number

2022-224-04660

Deadline

Mon Jun 20 00:00:00 CEST 2022

更多最新博士后招收信息请关注博士后招聘网微信公众号(ID:boshihoujob)

请您在邮件申请时在标题注明信息来自:博士后招聘网-boshihoujob.com,电话咨询时说明从博士后招聘网(www.boshihoujob.com)看到的博士后招聘信息。

声明:凡本网注明“来源:XXX”的文/图等稿件,本网转载出于传递更多信息及方便产业探讨之目的,并不意味着本站赞同其观点或证实其内容的真实性,文章内容仅供参考。如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任。作者如果不希望被转载或者联系转载等事宜,请与我们联系。邮箱:boshihoujob@163.com。

博士后招聘网微信公众号

博士后招聘网微信公众号

扫描二维码关注公众号,ID:boshihoujob

发布博士后招聘信息 加入博士人才库

博士&博士后社群

  • 博士后招聘1号群
    799173148

  • 博士后招聘2号群
    373726562

  • 哲学博士群
    934079716

  • 经济学博士群
    945762011

  • 法学博士群
    934096817

  • 教育学博士群
    934118244

  • 文学博士群
    934106321

  • 历史学博士群
    945803407

  • 理学博士群
    934102752

  • 工学博士群
    945827064

  • 农学博士群
    114347294

  • 医学博士群
    729811942

  • 管理学博士群
    797229360

Copyright©2018-2023 博士后招聘网(boshihoujob.com) 版权所有 皖ICP备18007485号-1 皖公网安备 34070202000340号

本网站所有资讯内容、广告信息,未经书面同意,不得转载。

博士后招聘网(www.boshihoujob.com)专注服务于海内外博士后研究人员。

博士后招收信息发布请联系邮箱boshihoujob@163.com,QQ:878065319,微信号:bshjob001。
联系时请注明单位名称(如:单位名称+博士后招收信息发布)。